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Some applications of ultrametric and hierarchical structures are discussed in the 
context of condensed matter physics. It is shown that a simple arrangement of 
barriers leads to the Vogel-Fulcher law for the diffusion contant. Evidence is 
given that in this model the Vogel-Fulcher law is independent of the 
Kohlrausch-Williams Watts law for relaxation. 
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1. I N T R O D U C T I O N  

The behavior of complex disordered systems becomes a central point in 
condensed matter physics. The complexity of disordered systems is the 
main difficulty in the theoretical treatment of random matter. Despite these 
difficulties, much effort has been made. Examples include the spin glasses as 
typical candidates for a system with quenched disorder (1) and similar 
approaches exploring more complex questions, such as neural networks (z) 
or such optimization problems as the traveling salesman problem, (3) the 
matching problem,(4) or graph partioning.(5) 

The step to "ordinary" glasses seems too large at the moment, but one 
can learn from the theory of spin glasses and try to construct simple 
models for highly complex random systems and see how far one can get. In 
order to give arguments for simple models, we mention here some of the 
most important features of complex systems. On the microscopic level we 
have disorder and frustration. In spin glasses this is well known. (1) In 
glasses frustration is not as simple as in magnetic systems, but by transfor- 
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ming the structure of network glasses into a higher dimensional, curved 
space one can employ similar concepts. (6) Another common feature is the 
configuration space structure. For the Sherrington-Kirkpatrick spin glass it 
has been shown that the free energy has many locally stable states ( H e  N ) 
and the configuration space looks like a random many-valley picture. The 
strongest common features of all disordered systems are observed 
macroscopically. Most such systems show a freezing behavior upon 
measurement of macroscopic quantities or transport properties (such as 
diffusion constants or viscosities in real glasses or spin correlation functions 
in spin glasses). Upon quenching of glass-forming liquids, the structure of 
the liquid freezes and a picture using stroboscopic light of the structure at 
the quench time can be taken. The freezing phenomena are always accom- 
panied by extremely slow dynamics and the relaxation of macroscopic 
quantities departs drastically from the classical Debye relaxation or 
exponential relaxation. Examples of these departures are power 
law relaxations [~( t /~)  ~] or the famous Kohlrausch-Williams-Watts 
(KWW) form of relaxation, which is a stretched exponential 
[ ~ e x p [ - ( t / r ) ~ ] ,  0 < ~ <  1]. v 

Measuring the relaxation time z, one always finds a strong increase of 
r with the temperature T. The strong increase is often put in the form of 
the Vogel-Fulcher (VF) law r ~ exp[ + A / ( T -  To)], (8) where A and To are 
fit parameters. It is believed that the VF law is universal for all glass- 
forming systems. This is also supported by the fact that T O ("Vogel tem- 
perature") is obtained to be T o ~ T g -  AT, where 10 < A T <  50 K. Here Tg 
is the actual glass or freezing temperature. (91 The same VF law is obtained 
for the diffusion coefficient and the viscosity. The above VF law is disputed 
by power laws from dynamical scaling and critical slowing down, (1~ where 

is given by r ~  ( T - T g )  ~z, where v is the correlation length exponent 
and z the dynamical scaling exponent. Experiments can be fitted by both 
laws reasonably well, but in the power law the exponent vz is very high for 
freezing processes (spin-glass transition).Ill) 

These brief introductory remarks show some difficulties in the 
dynamics of disordered systems, and we cannot solve them in this paper. 
The aim of this work is to take a simple model and try to find some of the 
macroscopic consequences discussed above. 

Of course, there are many ways to produce the KWW law, so that the 
situation becomes more and more difficult in deciding if a model is valid or 
not (by means of experiments). Most of the models are summarized in 
Ref. 7. 

The idea of using hierarchical constraints in the context of relaxation 
was put forward by Palmer et al., (12~ who assumed that, for example, a spin 
can only relax if several others relax, acting as a constraint to the first spin. 
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In this case the K W W  law is a consequence of a specially chosen relaxation 
time distribution. As a consequence of their model, there have been dis- 
cussions of the dynamics on ultrametric spaces, where it was assumed that 
the hierarchical constraints are ultrametric (see Ref. 13 for details). These 
authors have been able to show the occurence of various relaxation laws 
for special types of hierarchical barriers. They found power law relaxations 
and the K W W  law. We will go into more detail later in the paper. 

The situation of the VF law is not so well established. There are 
several phenomenological approaches of the free-volume type for real 
glasses (14~ giving a VF law for the transport  quantities. The VF law has 
been calculated for the "freezing" of a dense solution of hard rods by 
Edwards and Vilgis. (15) In this approach the VF law was a direct con- 
sequence of cooperative motion of several rods. One point we want to 
make in this paper is the possibility of finding a transition on a hierarchical 
structure that shows VF-type behavior. This result is an extension of recent 
work by Teitel and Domany  (16) and Vilgis. (17~ 

2. U L T R A M E T R I C  S P A C E S  AS A T O Y  M O D E L  

Ultrametricity entered into physics very recently (1984), when Mezard 
et al. ~18) discovered that the pure states in a spin glass have ultrametric 
structure. Despite the fact that ultrametricity is very new in physics, it is 
very old in mathematics and classification. For an excellent review on these 
topics and also on biological applications see Ref. 19. A space is an 
ultrametric space if the distance between joints of the space satisfies the 
strong triangle inequality 

d(A, C)~< max{d(A, B), d(B, C)} (2.1) 

where d(A, B) is the distance between points A and B. Note that this is a 
stronger inequality than the usual triangular one. 

How can we make use of the hierarchical model for some of the 
problems mentioned above? For  further discussion, let us consider the free 
energy surface of a random system. For  spin glasses the free energy surface 
contains e N local minima (N is the number  of spins). For  glasses a similar 
number of minima seem to be present (in this case N is the number of 
atoms). If we assume that in the free energy surface there is no intrinsic 
scale and that it looks the same on many scales, we can assume that it will 
be self-similar on some scales. This means that there are valleys within 
valleys and so on. 

To give an illustration, we suppose that the energy surface is given by 
a picture like that in Fig. 1. 
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configurafion coordinate 

If we enlarge one of the valleys we will find more or less the same pic- 
ture as shown there. Suppose for further discussion that if one of the valleys 
is occupied (i.e., the state of the system is represented by one of the valleys 
and the system changes by crossing a barrier), it could only reach the next 
valley, e.g., Fig, 2. 

This change in the configuration space by crossing barriers would 
mean in real space that a certain number of spins in a spin glass or a num- 
ber of atoms in an ordinary glass would have to flip or to move until a new 
configuration is taken, The new configuration is described by the new 
valley. This can now mapped on the diffusion of a particle in such a poten- 
tial. The particle represents the state of the system and the barrier height is 
a measure of the difficulty of changing the configuration of the system. Of 
course this argument is very handwaving and needs further investigation, 
but here this will be assumed. 

The problem is now cooked down to the diffusion of a particle in a 
random potential, and since we assumed that only the topologically next 
valley can be reached by a jump, the model is quasi-one-dimensional. 

The situation of the freezing system, that, for instance, the system can- 
not find another configuration during the observation time, corresponds in 
the model assumed here to a particle trapped in one of the valleys and 
unable to make a further jump out of it. The rate of change before reaching 
the "final frozen" state would correspond to relaxation of the system. 

The problem of one-dimensional motion on a one-dimensional chain 
with random barriers was extensively studied in Ref. 20, but the 
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I 
Fig. 3. Hierarchical arrangement of the barriers. I 

The tree creates the energy barriers. ] i ] , I ,  
calculations are not trivial and correct averaging is not easy. By making 
use of the hierarchical order of barriers, it was possible in Refs. 13 and 21 
to derive similar results as in Ref. 20 by much simpler methods. The 
hierarchical hypothesis says now that the random barrier chain can be 
replaced by a hierarchical arrangement of the barriers, as shown, for exam- 
ple, in Fig. (3). In this figure we have chosen the simplest regular scheme 
with two branches in the tree defining the barriers. (~3) It is no problem to 
generalize this picture to, for example, random branching at each 
branching point, but this would not change the results drastically. (22) 

3. D I F F U S I O N  A N D  A U T O C O R R E L A T I O N  

Let us stick to some of the simplest possible models. The simplest 
model is that of a uniform branching index z all over the tree and the 
elementary height of the barriers is A (see Fig. 4). Further assumptions are 
that at all levels the barrier height increases linearly with the level of 
generation. The space we consider is now given by the bot tom line of the 
tree. Imagine a particle sitting in one of the sites and wanting to jump to 
another site. For  a long time after a sufficient number of jumps this would 
correspond to a random walk on a specially chosen structure. If we do not 

1A 

k-2 k-1 k k*l k+2 

Fig. 4. A simple example of the arrangement of the barriers. The barrier height increases 
linearly with the level of generation. The branching index is 2 in this example. 



138 Vilgis 

have the constraint of quasi-one-dimensionality, the analysis is as carried 
out in Refs. 13 and 21 exactly by using master equations and transfer 
matrix methods. The analysis can be done by arguments given in Ref. 19 
and we will repeat the argument as a remainder and for later use. We 
assume temperature-induced hopping and put for the transition probability 

W ~ e x p [ - ~ A ( m ) ]  (3.1) 

where/3 1 = T is the temperature and A(m) is the energy barrier given at 
the mth level of generation. The simple argument now uses the effective 
time needed to move a distance m apart  

t~exp[BA(m)]  (3.2) 

The ultrametric distance m is used, which is defined here as the highest 
barrier that the particle has to cross. This implies that the particle can 
jump into a subcluster of the tree that is of ultrametric distance m away. In 
the simple ultrametric space given in Fig. 4 the particle can reach the mth 
cluster of the tree if it is able to cross the barrier of energy A(m); this is 
ruled by the probability proportional to the expression given in Eq. (3.1). 
It should be noticed that we have relaxed the constraint of quasi-one- 
dimensionality in this discussion and that no further (Euclidean) distance 
in addition to (non-Euclidean) ultrametric distance is present. This model 
is the pure model I~91 and can be called ultrametric. 

Obviously the first part  of the problem is solved if Eq. (3.2) can be 
inverted with respect to m; then we find for the ultrametric distance m 

m = A --1 [1//~(log t)] (3.3) 

where A 1 is the inverse function with respect to A [i.e., x =  A = I(A(x))], 
In the Ogielski-Stein (131 case, where A(m)= Am, we find immediately 

R(t) =m ~ (1/A~)log t (3.4) 

where R(t) is the ultrametric distance the particle has traveled. Hence, we 
can only say in which cluster the particle has traveled, not the site (label k 
in Fig. 4). Equation (3.4) indicates an extremely slow anomalous diffusion 
with a strong temperature dependence. The term anomalous diffusion is 
used whenever deviations from normal diffusion R ( t ) ~  t 1/2 are found. The 
most popular example of anomalous diffusion is the ant (24) on a per- 
colation cluster, (25~ and it is present on each self-similar structure 
(fractals). (26) 

The quantity responsible for relaxation is the autocorrelation function 
Po(t). (13) The quantity Po(t) in terms of random walks is given by consider- 
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ing a particle starting at the origin and measuring the time when it will 
come back to the origin. Po(t )  can be calculated from the number of dis- 
tinct visited sites explored by the particle in a time /.(27) This statement 
holds only for compact exploration, as clearly explained by de Gennes. (28) 
It also agrees with dynamical scaling for the probability function P(x ,  t) if 
only one length matters in the problem. Then x is an arbitrary distance. 
The scaling hypothesis for P(x ,  t) is then 

P(x, t)= Po(t) g(x/R(t)) (3.5) 

where R ( t )  is the diffusion law and g a scaling function. Since the 
requirement of normalization of (3.5) holds, we find 

Po(t)  ~ l / J R ( t ) ]  d~ (3.6) 

d l i s  the fractal dimension of the lattice defined by the mass scaling with the 
distance. On a Euclidean lattice dj-= d and [R(t)]  J is the volume explored 
by the walker in a time t. In general, from (3.6) the spectral dimension can 
be defined if R ( t )  ~ t l/a" follows a simple scaling law, dw being the fractal 
dimension of the trajectory of the walk. It follows then from Eq. (3.6) that 
Po(t)  ~ t J,/,2, where d, is the fracton--or spectral dimension (see Ref. 26 
for details). 

Application of these ideas to the ultrametric diffusion gives 

Po(t)  ~ z -  R(~) (3.7) 

z is the branching index of the tree and R ( t )  is given by Eq. (3.4). The final 
expression for Po(t )  is then 

Po(t)  ~ t (~og~)/~4 (3.8) 

which is now a power law with a linear temperature-dependent exponent. 
This is clearly nonexponential in time and agrees with the slow dynamics 
mentioned in the introduction. 

Comparing this law with the general law on a self-similar structure 
Po(t)  ~ t d,/2, we see that the pure ultrametric case would correspond to a 
continuously temperature-varying spectral dimension ds= 2T/A  log z. For 
d, > 2  the walk becomes noncompact and R ( t ) ~  t 1/2 will be observed for 
T >  A/log z. (29) This temperature 0 = A/log z will play a crucial role in our 
further considerations. 

A further remark should be made. The interpretation of the exponent 
in (3.8) as spectral dimension should be made more precise, since it would 
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mean for the specific heat (c ~ T ds in general) that a very peculiar tem- 
perature dependence would be observed, 

Cures ~ e x p [  ( 2 T / A ) ( l o g  z) log T] (3.9) 

which needs further comment, to be given elsewhere. 
One limiting case pointed out by Ogielski and Stein (13) is the slowest 

rate of growth for the ultrametric structure that leads to a stable random 
walk A ( m ) = A  logm. By use of Eq. (3.3) it is found that 

R ( t )  = m ~ t T/~ (3.10) 

and for Po 

Po(  t ) ~ exp( - t r/~ log z) (3.11) 

which is the stretched exponential observed widely in experiments, (7) but 
here again with a temperature-dependent exponent, which means that the 
form of the relaxation changes with temperature. Here the transition tem- 
perature from normal to anomalous diffusion is at T =  A [-see Eq. (3.10)], 
so that for all T >  A normal diffusion is expected rather than anomalous. 

If we choose an arbitrary power law dependence of the states, we can 
apply the same arguments as above. Suppose now that the barriers follow a 
law like 

A ( m ) = A m  ~ (3.12) 

where c~ is an arbitrary power; we find 

R (  t ) ~ (T/A)(log t )  1/~ (3.13) 

and for c~ ~ oo the diffusion becomes slower and slower, which is clear 
because the particle becomes more stuck in deeper and deeper valleys. By 
calculating the autocorrelation function P o ( t ) ,  we find at once 

P o ( t )  ~ exp [ - (T/A)(log t)l/~ log z] (3.14) 

and we see that the choice of ~ = 1 is the most peculiar one, since it will 
lead to a power law behavior in Po(t); for all other c~, Eq. (3.14) holds. 
Later c~ = 1/2 will correspond to a special case and here we find 

P o ( t )  ~ exp [ - (T/A)(log t) 2 log z] (3.15) 

which is faster than a power law. 
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4. Q U A S I - O N E - D I M E N S I O N A L  M O D E L S  

There are some differences in the results if quasi-one-dimensional 
models are considered. The particle is now restricted to jump only to the 
next site and clearly this involves a Euclidean distance implicitly. This type 
of model is no longer purely ultrametric. Again we first summarize some 
results published earlier. (16'1v) The finite dimensionality changes the result 
for the distance traveled from Eq. (3.4) to 

R = z  m (4.1) 

and the effective jump probability 

W ~  e -  ~4(m)(1/R) (4.2) 

including the entropy contribution for the particle restricted to jump only 
to the topologically next site. From t ~ 1 / W  we readily obtain (19) 

__  T l o g  z 

R ( t )  ~ tr'~ ~+ ~ (4.3) 

if it is assumed that 3 ( m ) =  Am.  

In this case Po( t )  can be derived by a simple argument, and because 
the model is one-dimensional, P o ( t ) ~  1 / [ R ( t ) ]  1 holds and 

T I o  z . g ~  

P o ( t ) ~  t 7-,og:+~ (4.4) 

This result has been confirmed in Refs. 16 and 30 by more sophisticated 
methods. There is again a transition from normal to anomalous diffusion. 

As long as Po( t )  ~ t p with p < 1/2 we find anomalous diffusion, since 
p o ( t ) . ~ t  -1/2 corresponds to the normal one-dimensional random walk. 
Here the transition occurs at the temperature 

0 = A/log z (4.5) 

so that for T >  0 normal diffusion takes place and for 0 > T anomalous dif- 
fusion will dominate the picture. 

For further models, for instance, A ( m )  = A log m, there are no simple 
expressions and Po( t )  has to be calculated numerically. The reason is again 
the one-dimensional character, because of which we cannot invert the 
equations. 

5. THE T R A N S P O R T  A N D  RELAXATION Q U A N T I T I E S  IN THE 
Q U A S I - O N E - D I M E N S I O N A L  M O D E L  

It would be interesting to compute the transport coefficients under the 
conditions of the transition from normal to anomalous diffusion. Since in 
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all the above considerations the transition takes place at a certain tem- 
perature, we expect a strong dependence of the transport coefficients on the 
temperature. The first step was taken by Teitel and Domany. (~6) Their 
result can be derived along the same lines as the simple argument presented 
above. 

We wish to calculate the diffusion constant as a function of tem- 
perature and start from the general result (3~ 

1/D = ( 1 / w )  (5.1) 

where ( l / W )  is the averaged barrier height. The rigorous calculation 
would start from a master equation for the diffusing particle on the lattice. 
The barriers from site to site are explicitly in the master equation, and the 
diffusion constant can be calculated from the properties of the master 
equation, as shown, for example, by Zwanzig. (3~ 

Indeed, we can derive the same results by using the simpler arguments 
presented in the previous sections. 

We calculate the diffusion constant at the level m for the quasi-one- 
dimensional model by the elementary definition 

D = lira R2(t) (5.2) 
t ~ o O  t 

where R2(t) is the mean square displacement and t is the time. Using 
Eqs. (4.1) and (4.2), we see that R~( t )=  (zm) 2 and t ~  We,  1 ~ z m e  ~(m~. We 
find then for the effective diffusion constant in the mth level of generation 

D m = zme - ~(ml/r (5.3) 

Equation (5.1) suggests we consider the inverse of D; summing over all 
effective inverse Dm, we obtain 

1/D ~ ~ e x p [ A ( m ) / T -  m log z] (5.4) 
m 

giving for the elementary model A ( m ) =  Am 

D ~ ( 1 - O / r )  (5.5) 

where the transition temperature 0 is given by 

0 = A/log z (5.6) 

The diffusion constant vanishes linearly with the ratio O/T if the tem- 
perature is decreased, signaling again the transition from normal to 
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anomalous diffusion. The physical interpretation of this law is that at high 
temperature the particle does not feel the barriers at all and its diffusion is 
according to the classical Einstein law R 2~  t. With lowered temperature 
the barriers become more and more important  and at the transition tem- 
perature 0 = A/log z anomalous diffusion sets in and the mean square dis- 
tance traveled becomes extremely small compared to the Einstein case. 

The question now is whether we can find a hierarchical set of barriers 
that turn the result (5.4) into the widely used Vogel-Fulcher law. For the 
diffusion this would mean where A is some constant 
D ~ e x p [ - A / ( l -  O/T)]. It turns out that this is possible if the change 

A(m) =Aom + e ~ (5.7) 

is made,/17) where e is treated as a small correction compared to A o (this is 
not a major restriction, as we will see later). A physical motivation for 
Eq. (5.7) is, for instance, a small fluctuation of the barrier A, A = (Ao + 6), 
where 6 obeys a Gaussian probability distribution with a variance 
depending on the level m. ~32) To be more general, we assume 

A(m ) = Aom + gm I ~ (5.8) 

where 0 < c~ < 1. 
The diffusion constant is then calculated to be 

1 exp m + - - m ~ - r n l o g z  (5.9) 
D .~ = 1 T 

The sum can be converted into an integral, which is evaluated by steepest 
descent; the result is given by 

1/c~ 1 1/~x-- (5 .10)  

which is indeed of the VF type. The classical VF law corresponds to the 
choice of ~ = 1/2, 

D ~ e x p  4 (1 --Oo/T ) (5.11) 

where 0o = A0/log z. 
Let us now study the relaxation behavior of this particular model with 

c~ = 1/2. Again we use the simple arguments from the previous sections and 
all we have to do use the relationship 

t ~ cxp[A(m)/T+ m log z]  (5.12) 
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where A(m) is given by Eq. (5.8) with ~ = 1/2. Taking the logarithm of 
both sides of (5.12) and inserting Eq. (5.8), we find 

log t = (Ao/T + log z) m + (e/T) ~ (5.13) 

which is now a quadratic equation in x/-~. The general solution is given by 

1 e 1 1 + 4 ( l o g  1 ( 5 . 1 4 )  
x / m = 2  T A o / T + l o g  z t ) - ~  - - f + l o g z  - 

where the unphysical second sign has been dropped. The general mean dis- 
placement is given by use of Eq. (4.1); we find 

R(t) = z m 

1 1 

x { [ l + 4 ( l o g t ) ( ~ T ) 2 ( T + l O g z ) l ' / 2 - 1 } )  (5.15) 

and the autocorrelation function turns out to be 

Po(t) ~ R - l ( t )  (5.16) 

because of the one-dimensionality. 
Po(t) looks very complicated, but two limiting cases can be worked 

out. First, we consider the limit e ~ 0. In this limit the square root in 
Eq. (5.14) is dominated by the 1/e 2 term and we find 

m = log t /A /T+ log z (5.17) 

so that the result quoted above [Eqs. (4.2) and (4.3)] is recovered, and 
Po(t) follows a power law decay. 

Second, we consider e ~ ~ ,  so that the square root can be expanded 
and Po(t) obeys in this case 

Po(t) ~ e x p [ -  (T/e) z (log t) ~ log z] (5.18) 

This formula agrees with that in Section 3. 
Using the choice of the barriers given in (5.8), we find a 

Vogel-Fulcher law, but we do not find a Kohlrausch-Williams-Watts law 
for the relaxation in this one-dimensional model. This result would suggest 
that for this model both laws are independent and they are not connected in 
general. 
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6. S O M E  OTHER M O D E L S  

We are now in position to discuss more models of the same type. We 
remark briefly on some possibilities. Choose, for example, the logarithmic 
arrangement of the barriers in the one-dimensional case. In this case the 
diffusion constant is given by 

1/19 ~ ~ e x p ( A / T l o g  m - m log z) 
m 

Again we approximate the sum by the integral 

(6.1) 

1/D = f dm m(A /T )  e -m  1ogz (6.2) 

which can be estimated by the gamma function. Therefore, D becomes 

D ~ (log z ) I + ~ / r [ 1 / F ( A / T +  1)3 (6.3) 

and we find no transition temperature larger than zero. Clearly, if T 
approaches zero, D ~ 0 as the F-function goes to infinity. 

If the linear and the logarithmic models are mixed, we find a power 
law for D. To see this, suppose we have 

A ( m ) =  Aom + e log m 

The diffusion constant is then calculated to be 

(6.4) 

D ~ (1 - Oo/T) 1+ ~/r (6.5) 

and the exponent is a function of the temperature. 
Finally, let us make some remarks on pure ultrametric models: All the 

transition temperatures should be lowered or even supressed. It is possible 
to derive similar formulas as discussed above, but they are not reported 
here. (32) 

7. C O N C L U S I O N  A N D  D I S C U S S I O N  

This paper has discussed some properties (mainly on one-dimensional 
models) of structures with hierarchically distributed barriers. That these 
concepts are useful in condensed matter physics has recently been shown 
by various authors. (12,13"16'21) Clearly, the models are very simple and can- 
not give answers to all the questions raised in the introduction, but they 
might be a small step in understanding the properties of complex systems. 
In this paper the analysis is kept as simple as possible; detailed con- 

822/47/1-2-10 
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siderations need more refined mathematical methods. We have dealt here 
only with the simplest possible form of presenting the material, but of 
course we are aware that more advanced methods would give further 
results; for example, we have not discussed possible additional long-time 
behavior of the diffusion constant (see Ref. 3t). Further, we cannot decide 
with these models whether the diffusion constant (and the inverse 
relaxation time D ~ ~-1) obeys a VF or a power law. 

On the other hand, we have derived the VF law by a very simple 
assumption on the form of barriers. The physical reason for this 
assumption could be a special distribution of the barriers, which is not 
purely random as in Ref. 22, where it has been shown that for a purely ran- 
dom arrangement of the 3's the results given in Section 3 are not altered 
drastically. If we assume that the fluctuating part of the A's obeys a dis- 
tribution that depends on the level of generation (m), Eq. (5.7) can be 
motivated.(32) 

One of the main results we want to stress is that we do not find a con- 
nection between the VF and the KWW law in our model, in contrast to 
other authors. (12) Hence, while Eq. (5.6) suggests a VF law for the diffusion 
constant (or the relaxation time), according to Eq. (5.14), we do not expect 
a drastic change in the autocorrelation function as long as e is small. 

A similar fact has been found recently in discussing a solution of 
dense, inflexible hard rods. 115) There the picture was that one rod is only 
able to move by translation (along its main axis), because the motion of 
the rod involving rotational degrees of freedom is hindered drastically by 
the presence of all the other rods. Then the rod can only progress if no 
barriers (=ano the r  rod) is in its way. If there is a barrier, this rod has to 
move out of the way, so the test rod can move. But in general the rod 
acting as a barrier is hindered by other rods, too, so that a whole barrier of 
rods has to move out of the way to enable the test rod to move. By incor- 
porating cooperativity into this model by saying that collective motion is 
possible if all the barrier rods and the test rod are moving in a closed circle, 
a VF-type law was calculated. It was shown that the cooperativity does 
produce the VF law, but is not necessary to establish the KWW law, (22) 

The discussion in this paper seems to confirm this, despite the fact that we 
did not interpret Eq. (5.11) as a result of cooperativity and we used a dif- 
ferent motivation than in Ref. 33. 

A further point should be discussed. We did not mention the role 
of 0o in our derivation of the VF law. Here it is only the temperature 
where the transition appears. However, for real systems the VF law 
{ e x p [ - A / ( T - T o ) ] }  shows a singularity at T o somewhat below the glass 
temperature Tg. As mentioned in the introduction, an empirical rule is 
To ~- Tg - 20-50 K. (9) The role of To is still not clear. An attempt has been 
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made to connect To with the so-called Kauzmann paradox, but the free 
volume interpretation seems to be more accepted (see Ref. 14 and referen- 
ces therein). For  a more detailed discussion on the role of the freezing point 
and the temperature appearing in the VF law, see Ref. 33. The simple 
hierarchical model in this paper is, however, too simple to give further 
elucidation concerning this point. 

One motivation for using the hierarchical structure is the assumption 
that the free energy surface is self-similar. Clearly this assumption remains 
to be proven. 

Finally, our simple mapping of a diffusing particle on a complex line 
and the changes of state of a complex system are not obvious at first glance 
and need further consideration. Nevertheless, the behavior of particles on 
these hierarchical structures is interesting for further discussion. These 
kinds of structures open many further applications and problems not dis- 
cussed in this paper. For  example, it would be interesting to consider trees 
with various loops in it in order to look for a dependence of the results on 
the number of loops. One can think also of models with a temperature- 
dependent branching index so that at high temperatures there are more 
channels than at low temperatures. ~32~ 

As a last remark, we point out again that similar results can be 
obtained for systems with random barriers (at least in one dimension), but 
in a much more difficult way. 
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